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An efficient numerical algorithm is proposed to accurately compute the
elastic fields in two-dimensional (2D) or three-dimensional (3D) micro-
structures with arbitrary elastic inhomogeneity and anisotropy. It combines
the equivalent inclusion method of Eshelby, the microelasticity theory of
Khachaturyan, and the spectral iterative perturbation method of Hu and
Chen. Its efficiency is compared with those of existing approaches in the
literature. The method can be conveniently implemented in phase-field
modeling of stress-dependent microstructure evolution and/or of mass/
electrical transport.

Keywords: phase field microelasticity; equivalent inclusion method;
spectral iterative perturbation; elasticity; simulation; mechanics

1. Introduction

Essentially, technologically important engineering materials are structurally inho-
mogeneous, containing defects such as voids and cracks, second-phase particles such
as precipitates, compositional heterogeneities, or heterostructures of dissimilar
materials. Very often, the inhomogeneous stress plays an important role in the
microstructure evolution as well as the chemical and electrical transport processes.
Therefore, our ability to efficiently compute the stress distribution is critical for
accurately predicting the temporal stress-dependent three-dimensional (3D) micro-
structure evolution and transport processes.

A commonly used method for solving the elasticity equation is the finite element
method (FEM) due to the availability of standard software packages as well as its
ability to handle complicated boundary conditions. However, since the interfaces are
moving during 3D microstructure evolution, FEM implementation requires constant
re-meshing of the computational grid and hence is computationally intensive.
Therefore, a number of numerical algorithms have been proposed for solving the
mechanical equilibrium equation in structurally inhomogeneous solids [1–12].
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For example, Leo et al. [13] and Zhu et al. [14] used the conjugate gradient method to
solve the mechanical equilibrium equation for a solid with the elastic moduli varying
linearly with composition field. Hu and Chen [11] developed a diffuse-interface-
based Fourier spectral iterative perturbation method (SIPM) in which the solutions
to the mechanical equilibrium equation are computed to a desired accuracy by
iterative refinements. It has been successfully applied to modeling spinodal
decomposition [15], precipitate rafting [16], plastic deformation [17,18] and grain
boundary migration in polycrystalline materials [19]. A similar method based on
sharp-interface description was implemented by Moulinec and Suquet [5], Michel
et al. [20] and Lebensohn [8], etc. Another approach is the phase-field microelasticity
method [9,10] (PFMM) based on the equivalent eigenstrain concept introduced by
Eshelby [1,21]. In this method, the strain energy of an elastically inhomogeneous
solid is expressed as a functional of the equivalent eigenstrain field. The equivalent
eigenstrain field is obtained by numerically solving the time-dependent Ginzburg–
Landau equations. This method has been used to compute the stress distribution in
solids containing voids and cracks and elastically inhomogeneous polycrystals.

In the present work, we propose a new method that combines the equivalent
eigenstrain concept of Eshelby, the microelasticity theory of Khachaturyan, and the
spectral iterative perturbation algorithm of Hu and Chen to solve the elasticity
equation in elastically anisotropic and inhomogeneous systems. In particular, we first
determine the displacement field and equivalent eigenstrain field by using the
equivalent eigenstrain method and microelasticity theory and by assuming the
equivalent eigenstrain is uniform within an inhomogeneity, or the uniform
eigenstrain approximation (UEA). We then use obtained displacement field as the
zeroth-order approximation for the spectral iterative perturbation method. We will
simply name this new algorithm as SIPMþUEA. It should be noted that for a
system containing a low volume fraction of ellipsoidal inhomogeneities, UEA
solution is sufficient, and the proposed approach enjoys the same efficiency as
elastically homogeneous systems.

In what follows, we outline a new procedure of calculating the displacement fields
and equivalent eigenstrain fields directly using UEA and SIPMþUEA for arbitrary
shaped inhomogeneities. Next, we compare the efficiencies and accuracies of SIPM,
PFMM, and SIPMþUEA using simple examples and summarize our findings.

2. Methods

According to Eshelby, for an infinite, elastically isotropic system containing an
ellipsoidal inhomogeneity, the distribution of eigenstrain fields is uniform inside the
inhomogeneity when it is subjected to a uniform applied stress [1,22]. Willis [23] and
Kinoshita and Mura [21] later showed that Eshelby’s conclusion is also valid in
elastically anisotropic systems. Following Wang et al., we consider an elastically
anisotropic and elastically inhomogeneous body that is also structurally inhomoge-
neous and is characterized by a shape function,

� rð Þ ¼
1 inside the inhomogeneity,

0 outside the inhomogeneity:

�
ð1Þ
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The coordinate-dependent elastic stiffness, Cijkl rð Þ, can always be presented as

Cijkl rð Þ ¼ C0
ijkl � DCijkl rð Þ, where C

0
ijkl is a reference elastic stiffness, and DCijkl rð Þ is the

variation from the reference value. The structural inhomogeneities are described by

fixed crystal lattice misfit strain (stress-free strain or eigenstrain), "�ij rð Þ. The idea of

Eshelby’s equivalent eigenstrain theory is to replace the inhomogeneous system with

an elastically homogeneous system containing an equivalent inclusion with

eigenstrain "0ij rð Þ, which is non-zero inside the inclusion and zero outside the

inclusion. Thus, Hooke’s law yields:

C0
ijkl "kl rð Þ � "

0
kl rð Þ

� �
¼ C0

ijkl � DCijkl rð Þ
� �

"kl rð Þ � "
�
kl rð Þ

� �
: ð2Þ

Following Khachaturyan’s microelasticity theory [24,25], the total strain "ij rð Þ
can be described by the sum of homogeneous strain �"ij and heterogeneous strain

�"ij rð Þ or the sum of elastic strain eij rð Þ and eigenstrain "�kl rð Þ:

"ij rð Þ ¼ �"ij þ �"ij rð Þ ¼ eij rð Þ þ "
�
ij rð Þ: ð3Þ

For a macroscopically homogeneous body, the homogeneous strain (or the

macroscopic strain) �"ij is determined by the mechanical boundary conditions. For

example, the homogeneous strain is equal to the applied strain in constrained

systems, and for systems under a constant stress, the homogeneous strain is given by

�"ij ¼ S0
ijkl�

app
kl þ "

0
ij rð Þ, ð4Þ

where S0
ijkl is the elastic compliance of the homogeneous matrix, �appkl is the external

applied stress, "0ij rð Þ is the volume average of the equivalent eigenstrain. The

inhomogeneous strain �"ij rð Þ can be expressed [24–26]:

�"ij rð Þ ¼
1

2

Z
q6¼0

d3q

2�ð Þ3
ni�jp nð Þ þ nj�ip nð Þ
� �

C0
pqst ~"

0
st qð Þnqe

�q�r, ð5Þ

where ~"0ij qð Þ is the Fourier transform of the field "0ij rð Þ, ~"0ij qð Þ ¼
R
V "

0
ij rð Þe

��q�rd3r �ij nð Þ is

the Green’s function tensor defined by the inverse of ��1ik nð Þ ¼ C0
ijklnjnl with

n ¼ q= q
		 		, and � ¼ ffiffiffiffiffiffiffi

�1
p

is the imaginary unit.
In order to obtain an analytical solution for "0ij rð Þ, we assume it is uniform inside

and zero outside the inclusions or

"0ij rð Þ ¼ "
00
ij � rð Þ, ð6Þ

where "00ij is a position-independent constant tensor. The Fourier transform of the

eigenstrain "0ij rð Þ is given as

~"0ij qð Þ ¼ "
00
ij

Z
V

� rð Þe��q�rd3r ¼ "00ij
~� qð Þ: ð7Þ

Substituting Equations (3)–(7) into Equation (2), and rearranging the terms yield

Aijst"
00
st ¼ bij, ð8Þ
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where

Aijst¼DCijkl rð Þ Iklst� rð Þþ
1

2
C0

pqst

Z
q 6¼0

d3q

2�ð Þ3
nk�lp nð Þþnl�kp nð Þ
� �

nq ~� qð Þe�q�r
� �

�C0
ijst� rð Þ,

bij¼DCijkl rð Þ "
�
kl rð Þ�S0

klmn�
app
mn

� �
�C0

ijkl"
�
kl rð Þ,

ð9Þ

Iijkl is a fourth rank unit tensor, and � rð Þ is the volume averaged shape function
representing the volume fraction of the inhomogeneities. Therefore, "00st can be
analytically obtained as A�1ijstbij where A�1ijst is the inverse of Aijst. For "00st to be
independent of position, Aijst and bij should be position independent within the
inclusion. When the volume fraction of inhomogeneity is small and the shape of
the inhomogeneity is ellipsoidal, Aijst and bij are independent of position within the
inclusion provided the eigenstrain from structural inhomogeneity "�kl rð Þ is uniform
within the inclusion. In this case, Equation (8) gives the exact solution to the
mechanical equilibrium equation.

For arbitrary shaped inhomogeneities with large volume fraction, we propose to
combine UEA and SIPM, i.e., using the uniform equivalent eigenstrain field
"0ij rð Þð ¼ "

00
ij � rð ÞÞ to obtain the zeroth-order displacement field for SIPM [24,25]:

~u0k qð Þ ¼ �
�

q
		 		2 �ik nð Þqj ~�

0
ijðqÞ, ð10Þ

where �0ij rð Þ ¼ C0
ijkl"

0
kl rð Þ, ~�0ij qð Þ is the Fourier transform of �0ij rð Þ, and C0

ijkl is the elastic
stiffness tensor of the homogeneous reference medium. SIPM is then used to iterate
the displacement fields to obtain an accurate solution.

3. Results and discussion

To test the accuracy of the proposed new algorithm, we performed two-dimensional
simulations in elastically inhomogeneous systems containing a cavity. In this case the
elastic contrast is infinite since the elastic modulus of a cavity is zero. A
computational domain containing 1024� 1024 grid points is chosen. Periodic
boundary conditions are imposed along x- and y-directions. Plane strain assumption
is used for the 2D simulations. We initially consider a particular elliptical
inhomogeneity with eccentricity zero embedded in a square domain subjected to a
specified uniaxial stress along the y-axis (Figure 1a). The faces perpendicular to the
x-axis are stress free. In order to compare with analytical solutions, we assume the
surrounding domain to be elastically isotropic with a Poisson’s ratio of 0.3.

To alleviate Gibbs effect in Fourier transforms in the spectral method arising
from a sharp interface, we introduced a diffuse-interface shape function in the
following form:

� rð Þ ¼
1

2
1:0� tanh � d rð Þ � d0 rð Þð Þ½ �
 �

, ð11Þ

where d rð Þ is the distance of any point (x, y) from the center of the ellipse, d0 rð Þ

denotes the length of the line segment drawn from the center to the surface, � is a
positive parameter controlling the width of the surface.
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We first compare the efficiencies of two existing techniques: SIPM and PFMM.

Figure 1b shows the number of iterations required for a particular relative

displacement error in SIPM and PFMM for the case of a circular cavity. The

relative displacement error was calculated using the following definition:

Relative error � ¼

P
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
unx rð Þ � uaccux rð Þ
� �2

þ uny rð Þ � uaccuy rð Þ
� �2

þ unz rð Þ � uaccuz rð Þ
� �2r

P
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uaccux rð Þ
� �2

þ uaccuy rð Þ
� �2

þ uaccuz rð Þ
� �2r ,

ð12Þ

where uni is the displacement solution of the nth iteration, and uaccui is the achievable

most ‘‘accurate’’ displacement solution for a particular technique. Theoretically, the

Figure 1. (a) Schematic of a 2D domain containing a circular cavity subjected to uniaxial
applied stress along the y-axis. The faces perpendicular to x-axis are stress free. R is the radius
of the circular cavity. (b) Displacement error and iteration steps curves calculated from SIPM
and PFMM methods. Normalized stress distributions along (c) A-A and (d) B-B sections
calculated from PFMM, SIPM, and UEA comparing with ANA.
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final converged results for PFMM and SIPM should be the same, but they converge
to slightly different final displacement distributions. Therefore, for each method, we
use its own final converged solution as the reference to calculate the displacement
error. In order to remove the effect of iterative time interval Dt in PFMM on the
comparison result, the maximal Dt was used to promise the convergence. In our
simulation, the computational times of each iterative step for PFMM and SIPM are
nearly the same, thus the number of iterative steps to a given relative error reflects
the convergent speed. It is shown that SIPM converges faster than PFMM in
Figure 1b–d show the computed normalized elastic stress distribution along the A-A
and B-B sections. The computed stress fields by SIPM, PFMM, and UEA are
compared with the analytical solution (ANA). One can see that the computed
profiles from SIPM, PFMM, and UEA method show excellent agreement among
each other and are slightly different from the analytical solution. The difference
between the numerical solutions and the analytical solution stems from the fact that

Figure 2. (a) Schematic of a 2D domain containing a square cavity subjected to uniaxial
applied stress along the y-axis. The faces perpendicular to x-axis are stress free. 2a is the side
length of the square cavity. (b) Displacement error and iteration steps curves calculated from
SIPM, UEAþ SIPM, PFMM, and UEAþPFMM methods. (c), (d) Normalized stress
distributions along A-A and B-B sections calculated from UEAþPFMM and UEAþ SIPM.
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all the numerical solutions were obtained with periodic boundary conditions with a
diffuse-interface description for the cavity surface while the analytical solution is for
ideally circular cavity in an infinite matrix with a sharp-interface description.

The excellent agreement between SIPM and UEA or PFMM and UEA implies
that UEA provides an excellent solution for systems containing ellipsoidal
inhomogeneities. When the geometry of the inhomogeneity is non-ellipsoidal, we
argue that the UEA solution can be a good initial guess for SIPM and PFMM.

Figure 3. (a) Elastic strain energy calculation for the circular cavity, including the total energy
by SIPM and PFMM, the elastic energy in the cavity domain Eel rDð Þ by PFMM. (b) Energy
calculation for the square cavity, including the total energy by SIPM, UEAþ SIPM, PFMM
and UEAþPFMM, the elastic energy in the cavity domain Eel rDð Þ by PFMM and
UEAþPFMM.

Philosophical Magazine Letters 333

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
3:

34
 0

1 
A

pr
il 

20
13

 



We compare the computational efficiencies of (UEAþ SIPM) and (UEAþPFMM)
algorithms with those of the existing PFMM and SIPM techniques for the case of the
system containing a square cavity as an example. The iteration time required for
convergence is plotted for each method as a function of accuracy of the solutions in
Figure 2b. It is obvious that both the computational efficiencies are improved by
employing the displacement solution and equivalent eigenstrain fromUEAmethod as
zeroth order displacement field in SIPM and initial eigenstrain field in PFMM,
respectively. The improvement is obvious when the relative error is lower than 1%,
which is sufficient for a good approximation. It should be noted that the most efficient
method for this particular case is (UEAþ SIPM), and it is followed by SIPM,
UEAþPFMM, and PFMM. Figure 2c and d show the computed normalized elastic
stress distribution along the A-A and B-B sections. The stress fields from
(UEAþ SIPM) and (UEAþPFMM) agree extremely well with each other.

In order to further elucidate the convergence of our developed methods, the
elastic strain energy changes as a function of iterations are calculated using both
methods for the systems discussed above. We use DE ¼ En � E1 to show the energy
convergence, where En denotes the total elastic strain energy of the system in nth
iteration and E1 means the total energy of the final iteration. Figure 3a shows that
SIPM converges faster than PFMM for total energy calculation. Also the elastic
strain energy in the inhomogeneous domain calculated by PFMM decreases and
becomes stable with iteration increasing because for inhomogeneity of cavity the
equivalent eigenstrain field is evolved by minimizing the elastic energy only in
the inhomogeneous domain [27,28]. In addition, the iterations converge faster when
the solutions from UEA are employed as zeroth-order displacement field and initial
eigenstrain field in SIPM and PFMM, respectively, as shown in Figure 3b.

4. Summary

In summary, we developed a new UEA algorithm based on Khachaturyan’s
microelasticity theory to analytically obtain the elastic solution for system containing
ellipsoidal inhomogeneities of small volume fraction. By combining UEA with SIPM
or PFMM, the computational efficiency is greatly improved for solving the
mechanical equilibrium equation in elastically inhomogeneous systems containing
arbitrary shaped inhomogeneities of arbitrary volume fractions. By comparing the
efficiencies of SIPM, PFMM, (UEAþ SIPM), and (UEAþPFMM), we found that
(UEAþ SIPM) is the most efficient way to compute the elastic solution in elastically
inhomogeneous systems. Even if the methods have been applied to two-dimensional
(2D) systems in this work, the methods can be generally applied to three-dimensional
(3D) systems. Since UEA is an analytical procedure to calculate the initial guess for
the displacement fields, subsequent iterations in SIPM do not depend on the choice
of the homogeneous reference medium.
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